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An ad hoc method is presented for determining a sequence of successive overrelaxation 
factors (w) that, although having no rigorous foundations at the moment, appears to produce 
a highly competitive iteration scheme for several classes of difference equations. A different w 
is chosen for each difference equation. 

INTRODUCTION 

In using the successive overrelaxation method (SOR) to solve a five-point 
difference equation (indeed, to solve any linear system), one needs an estimate of the 
optimal relaxation factor. This can be obtained by estimating the eigenvalues of the 
corresponding Jacobi method matrix. For simple equations and regions, a good 
estimate may be available; however, for nonseparable and/or nonsymmetric linear 
systems, this may not be so. Currently, methods are being developed to determine the 
relaxation factor dynamically (see, e.g., [6]). S ome earlier approaches are described 
in j7] and references cited therein. 

Another approach has been to use a different relaxation factor at each point (see, 
e.g., [I, 9, lo]). Th ese methods have frequently been designed for matrices with 
certain characteristic properties and thus may not be effective in general. We pro 
here a general method for determining a different relaxation factor for each p 
depending on the coefficients of the difference equations and the nature of the 
region and boundary conditions apparently subject only to the condition that S 
converges. Our method is similar in some respects to that of Brazier [ 11. IJnfor- 
tunately, we also have no analytic results. We tout the method on the basis of its 
behavior in a limited number of probiems. 

In Section 1 we describe our approach while in Sections 2 and 3 we describe 
modifications of the basic procedure due to boundary conditions and region shape, 
respectively. Section 4 contains a statement of the problems we applied the method to 
and a discussion of the results. In Section 5 we note other variable relaxation factor 
techniques and in Section 6, conclusions, 
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1. THE BASIC PROCEDURE 

Consider the five-point difference equation 

a~Xi+l,j+a2xi,j+i +a3xi-l,j+a4xi,j-, -aa,xij=bij, (1.1) 

where the ak are, in general, functions of i and j over some grid. We shall write the 
above in stencil notation as 

Our aim here is to solve (1.1) by an ad hoc SOR method using a different relaxation 
factor at each point. 

Consider stencil (1.2) at a particular point in the grid. Assuming, for the moment, 
that the difference equation has constant coefficients throughout the region, we 
determine the optimal relaxation factor and apply it to the point in question. This 
procedure is repeated at each point during the first iteration. We can then save the 
relaxation factors for the subsequent iterations, or subsequent solutions. 

Considering (1.1) with constant coefficients, the corresponding Jacobi stencil is 

a2 - a0 

[ I 

a3 0 41i a0 a0 
a4 - a0 

(1.3) 

Since the coefficients are constant, this equation is separable. To determine the eigen- 
values of the Jacobi matrix, we are led to solve the eigenvalue difference equations 

(4 a3ui-1 + aloi+l =rUlao~i, zlo=v -0 lv+1- 7 

@I = 0, 
(1.4) 

a4wj-l+ azwj+l =rl12aowi, Wo=WM+l 

where we have N x M unknowns in the region and where we have assumed given 
boundary conditions for the original problem. This leads to the Jacobi eigenvalues 

P ~,,=/1~+ii2=~[~cos~+Ja,a,cosLi--]. 
M+l (1.5) 

Since the matrix is obtained from a five-point stencil using the “natural ordering,” it 
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is known that for each ,IA the eigenvalues of the associated SOR method, I, satisfies 
ill, 131 

(/I + w - 1) = Cf+P, (1.6) 

where w is the relaxation factor. q,, the optimal mu, is the determined from (1.6) to 
minimize max / A]. 

If the ,u are real, we have (see, e.g., [ 11, 131) 

2 
cob = 

1+j/5-qF’ 
(1.7) 

where ,G = max ],D~,~] = ]p,,i /. If the ,U are purely imaginary, then (see, e.g., f2, 11 J) 

(1.8) 

However, when the ,U are complex, the situation is not so simple. Young [ 111 and 
Young and Edison [ 121 have given a procedure, which is somewhat involved, for 
determining the optimal w, while in a recent article Rigal [S] presents a simpler 
approach. In general, their efforts were directed to finding a single LC) using as much 
as is known about the distribution of the eigenvalues of the Jacobi matrix of the 
original problem. We have chosen their single-eigenvalue solution and applie 
each point separately. Thus, using the formulas of Rigal [8] and letting 

we have 

A =,a; +pUf, 
B=p;-p;, 

a=A’-B2, 

b=A2-B, 

0 = A4 yA2B {[3b + (a + b’)l’*j d3[(a + l~‘)l’~ - b]“‘3 

- (3b - (a + b2)l’*] a113[(a + b2)l12 + b]“j3 

+A2 + 3B2 - 4A*B}, 

Oij = -(O - (W’ + 46)“2)/2 if A’>B 

ojj = -(O + (W” + 4ayy2 if A2<B. 

It is not difficult to show that if ,q = 0, we obtain (1.7) and if&. = 0, we obtain (13). 
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It should be pointed out that it is necessary for P,, the real part of max lpP,J, to be 
less than 1 in magnitude for convergence. If such is not the case, the method is 
aborted. 

2. BOUNDARY CONDITION MODIFICATION 

Eigenvalues (1.5) were determined via (1.4) assuming given boundary conditions 
on all boundaries. Suppose, along one side, a normal derivative condition is given. 
Then (1.4a), e.g:, becomes 

a3vi-l + alVi+l =EllaOv~~ vo=o, v N-l = vN+l’ 

The largest eigenvalue in magnitude for this problem is 

(2.1) 

(2.2) 

where (r is the smallest positive zero of 

a 
3 

sin ~a(N + ‘> 

2 
= a sin ~~(N- I> 

1 2 (2.3) 

if a, /a, < (N + l)/(N - 1). If a, /a, > (N + l)/(N - l), then the required eigenvalue 
is 

,u, =i& cash?: 

where CL is the positive root of 

a3 sinh 74N + 1) = a sinh 74N - 1) 
2 1 2 . (2.5) 

Then in (1.9) we use 

iul.1 =iu1 + - a’, VGG cos &> P-6) 

where pl is either (2.2) or (2.4), whichever applies. If the boundary conditions are 

V -1= Vl, vN=o, (2.7) 

then the role of a, and a3 are interchanged in Eqs. (2.3) and (2.5). Brazier [l], in his 
method, suggests using 

a = l/N, (2.8) 

which is the solution of (2.3) for a, = u3. 
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If the normal derivative conditions exist at both ends, i.e., the boundary c~nditi~~s 
are 

V -1 =v1r V N-l =‘N+l, 

then one eigenvalue is (a, + u3)/u0 and the others are (2/a,) G cos(~~k/N). If ce, 
and a3 have the same sign, then ,ur = (a, + u3)/a,,. Otherwise it is the largest of 
(a, + a3)/a,, and (i2/a,) dm cos(~/N). W e note that Brazier 111 compromises 
with the use of (r = 1/(2N) in (2.2) for the eigenvaiue in this case. 

In a similar manner one can handle periodic conditions. Thus suppose (1Aa) is 
replaced by 

a3Vi-1 + aIvi+I =PUOUi, vo=vN, vl=vh,+,. (2. IO) 

This leads to a circulant matrix whose eigenvalues are known: i.e., 

2nk 2nk 
pu,== (a, +a,)cos- N + i(a, - u3) sin - 

N Ii 
a,, k = I,..., N. (2.1 I) 

If a, and a3 have the same sign, then the largest eigenvalue in magnitude is 
(ai + a,)/~, for k = N. When a, and a3 differ in sign, the largest eigenvalue in 
magnitude occurs when k is that integer which is closest to N/4. In any event. 

2nk 2nk 
*+(ar+a3)cos~+i(a,--u,)sin- 

N 
(2.12) 

is used in (1.9). (Brazier does not consider periodic conditions.) 

3. MODIFICATIONS DUE TO REGION SHAPE 

In each instant where the eigenvalue was to be determined, it was necessary to use 
the number of unknowns along each axis. In a rectangle, there is no ambiguity. 

FIG. 1. Selection of grid size in eigenvalue selection. 
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what if the region is not a rectangle? Experimental results indicate the following: At a 
given point, the value of M and N that should be used is that number of unknowns 
between the boundaries along a horizontal and vertical line through the point. In 
Fig. 1, we show the enclosing rectangle to use at an arbitrary point. This idea was 
also suggested by Brazier [l]. 

4. SOME NUMERICAL RESULTS 

We applied the technique presented in this paper to several different problems, 
comparing the results with those of the SOR method. The problems chosen were 
based on the experience of the author. In all cases, the initial guess was identically 
zero and iteration proceeded until the maximum change in any component was less 
than 10e6. These problems and results are as follows: 

PROBLEM I. Poisson’s equation in an L-shaped region (Fig. 2a). Table I contains 
some results. It seems clear that for this problem the ad hoc SOR is as effective as 
the SOR at optimal o. 

PROBLEM II. Poisson’s equation in a quarter circle or quarter ellipse using short- 
leg difference approximations (Fig. 2b). ’ 

Table II contains results for this problem. Again, we see that the convergence rate of 
the ad hoc SOR method is comparable to that of SOR at optimal CU. However, the 
choice of w for SOR can be critical. For example, in Table IIa, for the quarter circle 
with N = 63 and wb = 1.895, 118 iterations were required. For w = 1.89, 130 
iterations were necessary while w = 1.88 led to over 150 iterations. 

(a) 
L7 (b’Pl 

(d) 

FIG. 2. Region shapes. 
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TABLE I 

37 

64 
Ia) 

n 
64 

”  

”  AD-HOC SOR SOR iw,) 

15 44(1.91.1.72)” 44 (1.78) 
31 93(1.91-1.85) 94 (1.88) 
47 11411.91.1.891 116 (1.91) 

64 
lb) 

” 

n AD HOC SOR SOR (W,) 

15 80( 1.93-l .73) 81 il.861 
31 11811.93-1.86) 125 (1.915) 
47 15311.93-1.90) 159 11.93) 

‘RANGE OF o’s COMPUTED 

PROBLEM III. The calculation of the vorticity in a fluid flow problem in a 
symmetric Y-shaped region (Fig. 2~). 

This problem is described in detail in [3]. The equation is of the form 

V*u = Re(a(x, y) 24, + b(x, y) uJ, 

where a and b are functions of x and y and Re is a positive constant (usuahy the 
Reynolds number). The difference equations has the stencil 

I 

1 - Reb, 
1 +Reaii -4 (4.2) 

1 + Reb, 

where aii and b, vary over the grid. 
The results for this problem are shown in Table III. Here we begin to see how 

effective the ad hoc SOR method can be. For those linear systems which require 
severe underelaxation, the ad hoc method yields dramatic convergence. Further 
evidence of this appears in the next problem. 
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TABLE II 

N 
N AD-HOCSOR SOR (w,) 

31 5911.82-1.06) 61(1.80) 
63 115(1.91-1.03) 118(1.895) 

15 39tl.74.1.22) 39(1.72) 
31 7711.86-1.07) 68tl.851) 
63 149(1.92-1.03) 146(1.920) 

“Nm=o Nml 

2N 2N 

N ADHOCSOR SOR AD-HOCSOR SOR 

31 112(1.91.1.021 12911.894) 120(1.91-1.02) 107(1.900) 

PROBLEM IV. The calculation of the stream function in a fluid flow problem 
involving a stenosised tube (Fig. 2d) analytically mapped into a rectangle in axisym- 
metric coordinates (see 141 for details). 

The original equation is of the form 

*zz + %Y - 24,/r = -rh(r, z), 

where h(r, z) is some function and after mapping becomes 

(u,, + ~,,><xz’ + $1 - w,/r - urxz/r = -f-W, Y), 

where r is a function of x and y. This leads to a stencil of the form 

c - ag, 

1 + a& -2(C + 1) 1 - aAj , 1 c + CLgij 

(4.3) 

(4.4) 

(4.5) 
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TABLE III 

a) DIRICHLET PROB, 

Re AD-HOCSOR 

0 84(1.77 1.07) 
5 55i1.75.1.07) 

50 34(1.61-0.65) 
200 90(1.03-0.22) 

b) un =o on (I) 

0 10711.86-1.07) 
5 6211.84-1.07) 

10 4411.83-1.07) 
50 37(1.65-0.65) 

SOR (w,) %RAZ 

85(?.71) 91 
56f7.651 63 

103(0.73) D* 
>200(0.0971 0 

125(1.%1) 
6411.72) 72 
49il.57) D 

103(0.73) 0 

cl U" =o on 12) 

0 89(1.78-1.07) 91 
5 65f1.78.1.07) 88 

10 84f1.78.1.07) 10611.69) 129 

'D=DlVERGENCE 

where fii and g, are grid functions, C is a constant related to the mesh ratio, and 0: 
was inserted in the difference equation to allow a parameter study. 

Table IV contains some results. We again see the effectiveness of the ad hoc S 
over the SOR for large (r. Indeed, for such systems, mL)b is very near the range of 
divergent w’s. Thus, for Problem IVb, w6 for a = 2.5 is 0.39. However, an w of 0.42 
caused divergence. It would appear that SOR is not the method to use for stencils of 
the form (4.2) and (4.5). 

PROBLEM V. An equation of the form 

is an L-shaped region. 

This type of equation was encountered in the solution of a flow problem involving a 
fluid of second grade described in [5]. The difference stencil has the form 
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wJj 

-wgij -d, Wgij . 

-wAj 1 (4.7) 
Indeed, the techniques of this paper were devised to solve this problem [5]. Some 
results are presented in Table V. Although the convergence is not as dramatic as that 
in Problems III and IV, note that for W = 0.5, c+, was 0.076. For a change of as little 
as 0.001, i.e., cu = 0.077, the SOR method diverged. Thus it is almost impossible to 
get an estimated w to give reasonable convergence without running the problem for a 
series of w’s. The ad hoc SOR spares us this agony. 

PROBLEM VI. The Poisson equation in a rectangle using logarithmic varying 
mesh in each direction. 

The results for this problem are shown in Table VI. The ad hoc SOR method did 
not appear to be as effective as the SOR for certain cases. To investigate this more 
closely, it was decided to run a one-dimensional counterpart to this problem. The 
exact theoretical CL)~ for the one-dimensional problem was determined from the 

TABLE IV 

IVa) 
I51 

89 

a AD-HOCSOR SOR (Ohi 

1 4311.72.1.40) 43(1.70) 
50 4lfO.93.0.084) 103(0.19) 

u =o 

IVb) 
I 

1 74f1.82.1.39) 68tl.78) 
25 2611.3.0.16) 93to.391 

IVci 

5oyl ho ;'(o.g3.0.0s2j , 

1 44tl.72.1.39) 
25 2811.3-0.16) 

IVd) 5~ermi~c fzl periodic 

1 43tl.72 1.38) 4311.70) 
50 43tO.93.0.084) 106(0.19) 
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TABLE V 

41 

w AD-HOC SOR SOR b,i 

0.1 65(0.993-0.223) 78tQ.32) 
0.5 206(0.86-0.05) 256fCJ.076) 

spectral radius of the Jacobi matrix which was computed using EISPACM. The 
results are shown in Table VII. 

There apparently are two cL)b’s-one theoretical and one computational. The 
theoretical wb depends on the difference equation, the boundary conditions, and the 
region shape. The computational wb depends on these, and also the right-hand side, 
the initial guess, the norm used in the computation, the convergence criterion, etc. 
most cases, these agree or differ negligibly. But occasionally, the difference can be 
marked and the number of iterations can be quite different. Table VII displays such a 
situation. Also we note that the two problems in Table IIc have the same coefficient 
matrix but different right-hand sides. They have the same theoretical mob but, as the 
table shows, each has its own computational wb. 

5. OTHER VARIABLE RELAXATION TECHNIQUES 

To our knowledge, there are three other variable relaxation factor techniques in the 
literature. We briefly comment on each. 

(a) Brazier [l] 
This approach appears to be closest to our technique. Based on stencil (1.2), the 

equations are as follows: Let 

a - mNa,, a3br 13 - 

Q= min(a,, a3), 

a - max(a,, a,), 24 - 

aZ4 = min(a,, a& - 
Then 

(5.1) 

a = a, - s cos(n/N) - s cos(n/M), 

b = Q sin@/N) + s sin(z/M), 
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TABLE VI 

N M AD-HOCSOR SOR (Wb) BRA2 

15 15 32tl.673 1.671) 2911.691 29tl.70 1.69) 

31 31 60(1.821-1.819) 5511.84) 54i1.84.1.83) 

63 63 111(1.906-1.905) 98tl.916) 101~1.92-1.91) 
15 63 98(1.904-1.881) 87fl.91 1.90) 

63 15 64t1.861.1.741) 8111.90-1.78) 

b) I 

15 
31 

63 
15 
63 

Cl 

15 49(1.823-1.759) 47t1.810) 49t1.83.1.78) 

31 98(1.892 1.856) 92f1.902) 87tl.91.1.88) 

63 187(1 944-1.925) 190(1.960) 164tl.961.94) 

63 175(1.943-1.906) 177fl.956) 175t1.96.1.94) 

15 88(1.890-1.840) 85c1.892) 87(1 91-1.87) 

N 

l’” 
-0 

L 
M 

N M AD-HOCSOR SOR (a,) BRAZ 

15 15 45(1.82-1.76) 43t1.771 49(1.83-1.76) 

31 31 89(1.89-1.86) 76tl.883) 92(1.91-1.88) 

63 63 172(1.94-1.93) 134(1.940) 160(1.96-1.94) 

15 63 151(1.94-1.911 119(1.934) 164(1.96-1.94) 

63 15 85(1.89-1.84) 81tl.876) 93(1.91-1.87) 
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TABLE VII 

(a) N - 
7 

15 
31 
63 

lb) 

7 
15 
31 
63 

(c) 

7 
15 
31 
63 212 (1.94-1.94) 207 (1.9451 165 (1.948) 

AD-HOCSOR SOR ( wb-them.) SOR I w~-comp.) 
t I 

18 (1.44-1.44) 18 (1.449) 16 11.46) 
34 11.67-1.67) 33 (1.675) 31 Il.701 
64 11.82-1.821 63 (1.822) 56 (1.83) 

119 11.90-1.90) 118 (1.907) 94 (1.314) 

1 FL!"=0 

32 (1.72.1.70) 35 11.672) 31 (1.71) 
59 (1.85-1.84) 70 11.833) 59 11.841 

129 (1.92-1.91) 135 11.916) 117 (1.92Ol 
261 (1.96-1.95) 252 (1.958) 212 11.960) 

U" =ot-, 

27 (1.62-1.64) 28 (I.6031 26 (1.62) 
48 11.79-1.80) 57 (1.7891 52 11.80) 

107 11.89-1.89) 111 11.891) 87 (1.898) 

c = aI3 cos(n/N) + az4 cos(~/M), 

d = G sin(n/N) + G sin(n/lW), 

f = 2(u - ~)/(a’ - c2 + b* -d*), 

g = (ad* - cb*)/(a - c) - ac, 

wij=fa()/(l + dm). 

The arguments of the trigonometric functions are appropriately modified when 
derivative boundary conditions are used, as described in Section 2. 

The method appears to be most effective for matrices whose off-diagonal elements 
all have the same sign. Considering our problems, we have the following: For 
Problems I and II, this method is as effective as both ad hoc SOR and S 
Problem III, Table III contains some results indicating divergence usually occurs 
when some of the off-diagonal coefficients change sign. For Problem VI, the method 
produces results similar to those of the ad hoc SOR, subject to numerical fluc- 
tuations. 

In Brazier’s paper [l] he applied his method to an L-shaped region containing a 
rectangular bole. Using a variety of boundary conditions on the region, his 
application included both a “uniform coefficient set” and a “nonuniform coefficient 
set.” We applied the ad hoc SOR (and Brazier’s method) to the latter and d~~iicat~d 
his results. Thus generally, the ad hoc SOR method is as effective as Brazier’s 
method when the latter converges and appears to converge for some problems for 
which Brazier’s method does not. 

(b) kssel [9] 

This method was devised specifically for equations whose stencil have the form 
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l-b 

lfa -4 l-a . 
l+b 1 (5.3) 

The formulas is 

wii = 2/(1 + &[(a* + b*) + n*(N-’ + M-*)1), (5.4) 

which was determined empirically. The method produced results corresponding to 
those of the ad hoc SOR and the SOR for Problems I, II, and III, problems for which 
it was devised. However, the technique deteriorated or was not applicable to 
Problems IV, V, and VI. 

(c) Strikwerda [IO] 
Considering the stencil of (1.2), Strikwerda’s formulas formula is 

(5.5) 

Although this appears to be applicable to general difference equations, it was 
developed specifically for stencils of the form (5.3) for very large a and b of order 
lO-100,000. As it turned out, this approach was not competitive with ad hoc SOR 
for the problems considered here, but may well be, however, for the problems for 
which it was designed. We further note that Strikwerda has some analytical results 
[lo] and also relaxation factors for nine-point stencils. 

6. COMMENTS AND CONCLUSIONS 

The computation of the co’s will require some extra work, equivalent to several 
SOR iterations. However, if we have no idea what the optimal w might be, this extra 
work can be easily recovered in producing a near optimal iteration procedure, 
especially for problems of type III and IV, where the optimal o is dangerously close 
to the divergent region (Figs. 3, 4 in [8]). 

For those problems with, e.g., normal derivative conditions, the solution of 
Eqs. (2.3) or (2.5) can increase the time needed for determining the ad hoc w’s. If 
only a few solutions are desired, it may well be sufficient to use Brazier’s choice (2.8) 
to save some time without seriously retarding convergence. 

There is always a danger in making generalizations based on limited experience. 
Nonetheless, our results here are so tempting, we are inclined to recommend the ad 
hoc SOR, at least for problems that are to be solved relatively few times. In 
particular, problems of type III and IV should use the ad hoc method (type III can 
also use Russel’s). Problems of type V appear to have no more effective iterative 
approach than ad hoc SOR. Clearly, however, more investigation is-needed. 
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